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Abstract
Quantile regression models have become a widely used statistical tool in genetics

and in the omics fields because they can provide a rich description of the predictors’

effects on an outcome without imposing stringent parametric assumptions on the

outcome-predictors relationship. This work considers the problem of selecting

grouped variables in high-dimensional linear quantile regression models. We

introduce a group penalized pseudo quantile regression (GPQR) framework with

both group-lasso and group non-convex penalties. We approximate the quantile

regression check function using a pseudo-quantile check function. Then, using the

majorization–minimization principle, we derive a simple and computationally

efficient group-wise descent algorithm to solve group penalized quantile regression.

We establish the convergence rate property of our algorithm with the group-Lasso

penalty and illustrate the GPQR approach performance using simulations in high-

dimensional settings. Furthermore, we demonstrate the use of the GPQR method in

a gene-based association analysis of data from the Alzheimer’s Disease Neu-

roimaging Initiative study and in an epigenetic analysis of DNA methylation data.
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1 Introduction

Given the high-dimensional nature of omics experiments (omics refers to genomics,

metabolomics, proteomics and transcriptomics), data regularization is becoming a

standard approach to better extract relevant predictors for an outcome because there

is typically a wild excess of predictors over participants. These top-ranked or

selected predictors can be meaningful with respect to having a functional

relationship to the trait or outcome. The lasso regularized regression (Tibshirani

1996) and its generalizations are attractive data-regularization tools for analyzing

high-dimensional data.

In many situations, it is reasonable to group predictors so that the predictors

belonging to the same group are included or excluded from a model simultaneously.

For instance, in genome-wide association studies (GWAS) (Zhou et al. 2011; Lange

et al. 2014), to understand the underlying biological structure of a complex disease

better (e.g. Alzheimer’s disease), one might want to group single-nucleotide-

polymorphisms (SNPs) within a gene or genes within a biochemical pathway and

then exploit group structure effects on a disease. In epigenetics studies, considering

the correlations between methylation levels (features) in nearby positions along the

genome can lead to better identifying differentially methylated genomic regions

between two groups (outcome) (Lakhal-Chaieb et al. 2017). Another attractive

motivation of the group-variable selection models is the additive model with

polynomial or non-parametric components, whereby each component/group may be

expressed as a linear combination of basis functions of the original variables. In this

context, the selection of important variables corresponds to the selection of groups

of basis functions.

One can achieve group-variable selection by adding group penalties to the

regularization-based regression approaches. The group lasso penalty (Yuan and Lin

2006; Meier et al. 2008), also denoted as an L1=L2 penalty, is an extension of the

lasso for performing variable selection on (predefined) groups of variables in

generalized linear regression models. If each group of predictors reduces to a single

predictor, then the group lasso penalty reduces to a standard lasso penalty. Because

both Yuan and Lin (2006)’s and Meier et al. (2008)’s approaches require

orthonormality of the groups, recently, Yang and Zou (2015) used a quadratic

majorization trick within block descent algorithms to relax the predictors’

groupwise orthonormality assumption. Moreover, Yang and Zou (2015) developed

efficient algorithms to solve group-lasso penalized regression for a class of loss

functions, including ordinary least squares, logistic, and several large margin

classifier loss functions.

Like the regular lasso, the group-lasso lacks the selection consistency property

because it tends to overly shrink the relevant group of variables. To overcome the

over-shrinkage problem and gain selection consistency, Wei and Zhu (2012) have

extended the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li

2001) and the minimax concave penalty (MCP) (Zhang 2010) for group variable

selection, however both approaches require the groups to be orthonormal. Breheny

and Huang (2015) suggested group-SCAD and group-MCP penalized approaches in
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the case of ordinary least squares (OLS) regression and a general design matrix (i.e.

non-orthonormal groups).

Omics data, however, are heterogeneity prone, and covariates may have different

effects on different segments of the conditional distribution of the response. These

types of heterogeneity are of interest to many researchers; however, they tend to be

overlooked by using (group) penalized OLS methods that only capture the effects of

the covariates on the mean of the conditional distribution.

Quantile regression (QR) assesses how conditional quantiles of the response

variable vary with respect to measured covariates (Koenker and Bassett 1978;

Koenker and Hallock 2001). By allowing estimation of the predictor effects in

different quantiles, QR provides a more complete picture of the conditional

distribution of the response variable than the single estimate of the conditional mean

that can be obtained via OLS regression. QR is widely used in genetics and in the

omics fields, and Briollais and Durrieu (2014) provide a good review of its

application in these fields.

Many recent studies have focused on penalized QR in high dimensional settings.

Earlier in this decade, several authors investigated the theoretical properties of

penalized QR, including Belloni and Chernozhukov (2011a), Wang (2013), and Fan

et al. (2014a) for the lasso penalty; Wang et al. (2012), Fan et al. (2014b), and

references therein for the non-convex penalties. More recently, several studies have

focused on the computational aspect for solving the penalized QR framework,

including Wu and Lange (2008) and Li and Zhu (2008) for the lasso penalty; Peng

and Wang (2015) for non-convex penalties; Yi and Huang (2017) for the elastic net

penalty; Juban et al. (2016) and Mkhadri et al. (2017) for the lasso, SCAD and MCP

penalties.

Several authors have introduced penalized QR in the context of both semi- and

non-parametric frameworks (Oh et al. 2011; Zhao et al. 2005). Waldmann et al.

(2013) proposed a Bayesian semi-parametric QR additive model, where penalized

splines are employed for non-parametric components, and the lasso penalty is

employed for the parametric components. However, model selection is restricted to

the (linear) parametric part of the model, and there is no selection in the non-

parametric part of the model. Fenske et al. (2011) extended the boosting algorithm

to a semi-parametric QR, which allows for selection of both linear and nonlinear

effects.

Although the theoretical aspect of group penalized QR has recently been

addressed by a few authors, computationally efficient algorithms for solving

groupwise penalized QR have received less attention in the literature. Kato (2011)

developed theoretical results for the convergence rate and the oracle property of the

group-lasso QR estimator. To estimate the model parameters, the author

transformed the group-lasso QR problem to a second order cone programming

(SOCP) problem and then used an interior point algorithm to solve it. Anterior point

algorithms, however, can be computationally challenging in the presence of high

dimensional data (Efron et al. 2007). Asymptotic normality of the adaptive group-

lasso QR estimator was addressed in Ciuperca (2019), for a fixed and divergent

number of the groups. Hashem et al. (2016) proposed a group-lasso penalized QR

for the binary response. In Hashem et al. (2016), a continuous latent variable is
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considered to govern the binary response, and techniques similar to those used in

Bayesian lasso (binary) QR frameworks (Ji et al. 2012; Kozumi and Kobayashi

2011) are employed to develop a Bayesian Gibbs sampling procedure to estimate

the model parameters. Because continuous priors are imposed on the regression

parameters, sparsity cannot be achieved (i.e. draws from the posterior distributions

are never exactly zero), and variable selection needs further manipulation. Finally,

although Peng and Wang (2015) claimed that their R package software, rqPen,
performs groupwise penalized QR, the method as described in their manuscript only

handles single-variable-selection non-convex penalized QR and no procedure within

the rqPen R package achieves group selection. In summary, computationally-

efficient methods are lacking for group variable selection in QR.

In this work, we develop a unified computationally-efficient framework for

solving penalized quantile regression with group-lasso, group-SCAD, and group-

MCP penalties. Because one of the biggest challenges in solving QR lies in the non-

differentiability of the loss/check function (Koenker and Hallock 2001; Hunter and

Lange 2000), we rely on the pseudo-quantile check functions proposed in Aravkin

et al. (2014) and Oh et al. (2011), and we use the majorization-minimization

principle within block coordinate descent algorithms to solve the groupwise

regularized QR problem. We also develop two additional alternative algorithms to

solve the group-SCAD and group-MCP penalized QR based on the local linear

approximation trick (Zou and Li 2008). Our framework, termed group penalized

pseudo quantile regression (GPQR), allows for general design matrices. That is, it

does not require the predictors to be groupwise orthonormal. The framework is

implemented in an R software package, GPQR, which is publicly available in

GitHub (https://github.com/KarimOualkach/GPQR). Moreover, we study the rate

of convergence of our framework for the group-lasso penalty.

The remainder of this article proceeds as follows. In Sect. 2 we formulate our

GPQR framework, we provide the convergence rate analysis of our algorithm for

the group lasso penalty, and we give details about the algorithm’s implementation.

Evaluation of the performance of our methods through exhaustive simulation

studies is considered in Sect. 3. In Sect. 4, the use of the proposed methodology is

illustrated in gene-based analyses of two interesting real genetic datasets. We

conclude with a discussion section.

2 Pseudo quantile regression and group penalizations

Let fðy1; x1Þ; . . .; ðyn; xnÞg be observed data, where yi is the observed response and

xi ¼ ð1; xi1; . . .; xipÞ> is a ðpþ 1Þ-dimensional observed vector of predictors for

subject i ¼ 1; . . .; n. We denote by X the design matrix with n rows and pþ 1

columns. We assume that the predictors 1;X1; . . .;Xp are put into K groups

ð1; 2; 3; . . .; pþ 1Þ ¼
SK

k¼1 Ik, where the size of each group is pk (the cardinality of

index set Ik is pk) and the groups are non-overlapping (Ik \ Ik0 ¼ ; for k 6¼ k0).
Because the intercept is included, we assume I1 ¼ f1g.

The group penalized QR problem can be formulated as
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b̂s ¼ argminb

�
RðbÞ :¼ 1

n

Xn

i¼1
qsðyi � x>i bÞ þ

XK

k¼1
Pk;wk
ðkbkk2Þ

�
; ð1Þ

where qsðuÞ ¼ js� Iðu� 0Þj � juj, is the so-called check/hinge function (Koenker

and Hallock 2001), and ðb̂sÞk is the vector of the effects of the predictors belonging
to group k on the sth conditional quantile of the response. Hereafter, for ease of

notation, we drop the subscript for the vector bs when no confusion arises. Pk;wk
ð�Þ is

the penalty function with regularization parameter k and penalty weight, wk, for the

group k. The weight’s default value is wk ¼
ffiffiffiffiffi
pk
p

. Because the intercept is not

penalized, w1 ¼ 0. In this work, we consider the group lasso (Glasso), group MCP

(GMCP), and group SCAD (GSCAD) penalties which are defined respectively by

the penalty function, Pk;wk
ðkbkk2Þ, as follows

kwkkbkk2; ð2Þ

wkðkkbkk2 �
kbkk

2
2

2h
Þ1ðkbkk2 � hkÞ;wk

1

2
k2h1ðkbkk2 [ hkÞ;:

��

ð3Þ

kwkkbkk21ðkbkk2 � kÞ;wk
hkkbkk2 � ðkbkk

2
2 þ k2Þ=2

h� 1
1ðk\kbkk2 � hkÞ;wk

k2ðh2 � 1Þ
2ðh� 1Þ 1ðkbkk2 [ hkÞ;:

��

ð4Þ

where h is a second tuning parameter of the GMCP and GSCAD penalties, with

h[ 1 for GMCP and h[ 2 for GSCAD. Investigation of optimal values of h has

been discussed in the literature and fixed values, such as h ¼ 4 for GSCAD and

h ¼ 3 for GMCP, have been suggested as suitable for many problems; however, the

performance does not improve significantly with h selected by data driven

approaches, (Fan and Li 2001; Ogutu and Piepho 2014). We therefore set h equal to

the recommended values in all our simulations and real data analyses.

Solving (1) can be very computationally challenging, especially in high-

dimensional settings, owing to the non-differentiability of qsð�Þ. To overcome this

issue, we suggest replacing qsð�Þ in Eq. (1) with one of the following two pseudo-

quantile approximation loss functions (Mkhadri et al. 2017):

Wð1Þs;dðuÞ ¼

ðs� 1Þðuþ d
2
Þ if u\� d

ð1� sÞu2
2d

if � d� u\0

0:5su2=d if 0� u\d

sðu� 0:5dÞ if d� u

8
>>>>>>><

>>>>>>>:

ð5Þ
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Wð2Þs;dðuÞ ¼

ðs� 1Þu� dð1� sÞ2

2
if u\

s� 1

d�1

1

2d
u2 if

s� 1

d�1
� u� sd

su� ds2

2
if u[ sd:

8
>>>>>>><

>>>>>>>:

ð6Þ

Hence, the GPQR problem, in its general form, is given by

b̂ðdÞ ¼ argminb

�
RdðbÞ :¼ LðbÞ þ

XK

k¼1
Pk;wk
ðkbkk2Þ

�
; ð7Þ

where LðbÞ ¼ n�1
Pn

i¼1 Wsðyi � x>i bÞ and Wsð�Þ ¼ Wð1Þs;dð�Þ or W
ð2Þ
s;dð�Þ is one of the

two pseudo functions (5) or (6). Figure 1 (left panel) illustrates the QR check

function qsð�Þ and the pseudo loss function, Wð1Þs;dð�Þ, for s ¼ 0:25 and d ¼ f1; 2g.
The right panel contrasts the function Wð2Þs;dð�Þ and qsð�Þ for d ¼ f2; 4g and s ¼ 0:75.

Actually, when d becomes small, the two pseudo loss functions become close in

shape to the QR check function; however, both functions are differentiable every-

where and have continuous derivatives.

The pseudo approximation (5) is proposed by Jennings et al. (1996). It has also

been used by Oh et al. (2011) and Zhao et al. (2005) in the context of non-

parametric QR. The pseudo approximation (6) is introduced by Aravkin et al.

(2014). The first pseudo approximation is given by four intervals; however, the

Fig. 1 Left panel: the standard quantile function q0:25ð:Þ is shown by a solid line and the pseudo quantile

functionWð1Þs;dð:Þ for s ¼ 0:25 and d ¼ f1; 2g are shown by the dotted and dashed lines, respectively. Right
panel: the standard quantile function q0:75ð:Þ is shown by a solid line and the pseudo quantile function

Wð2Þs;d for s ¼ 0:75 and d ¼ f2; 4g are shown by the dotted and dashed lines, respectively
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second pseudo approximation is defined only on three intervals, which leads to a

difference in computation times when calculating the gradient in favor of (6)

(Mkhadri et al. 2017). The next proposition provides the theoretical justifications

for the success of these two approximations in providing a good solution for the

initial problem (1).

Proposition 1 For any fixed value of d, let b̂ðdÞ be the unique minimizer of RdðbÞ in
(7). Then we have

inf
b
RðbÞ�Rðb̂ðdÞÞ� inf

b
RðbÞ þ 2jd;

where RðbÞ is the exact group penalized quantile regression loss function defined in

(1) and j ¼ maxðs; 1� sÞ=2 or maxðs2; ð1� sÞ2Þ=2.

The proof of Proposition 1 is detailed in Sect. 1 of the Supplementary material.

The above two inequalities are true for all possible values of the tuning parameters

(k for GLasso or ðk; hÞ for GMCP/GSCAD). Thus, we can compute the solution of

(1) for the three group penalties by solving (7) with a small value of d. In fact, as

d! 0, the QR with original check function qsð:Þ and its pseudo approximations

Wdð:Þ are very similar. Mkhadri et al. (2017) showed that the convergence speed of

pseudo-QR with the lasso penalty is greatly decreased for small values of d, and
therefore, it can be used to control the trade-off between speed and accuracy. For the

GPQR framework, we followed Mkhadri et al. (2017) and set d ¼ 1 in all analyses,

which is a suitable value of d to balance between algorithm computational

efficiency and model accuracy. This is also the default value of this parameter in

their SQR R package.

To solve problem (7), we propose a groupwise descent algorithm; the details are

as follows. Let ~b ¼ ð~b1; . . .; ~bk�1; ~bk; ~bkþ1; . . .; ~bKÞ be the current iteration and
~b�k ¼ ð~b1; . . .; ~bk�1; ~bkþ1; . . .; ~bKÞ be the current iteration with the k-th group

excluded. Suppose we are updating the k-th group of b, that is, bk ¼ ðb1; . . .; bpkÞ
>

for some k 2 f1; . . .;Kg. Furthermore, consider the objective function RdðbÞ in (7)

as a function of the k-th group bk, while keeping all the other groups fixed at ~b�k,

that is, Rdðbk; ~b�kÞ :¼ RdðbÞbk0¼~bk0 ;1� k0 �K;k0 6¼k and

Lðbk; ~b�kÞ :¼ LðbÞbk0¼~bk0 ;1� k0 �K;k0 6¼k. Thus, at each iteration, we optimize the

objective function RdðbÞ only in terms of the k-th group variables bk, while keeping

all the other groups fixed at ~b�k (i.e, ~b
new

k  argminbkRdðbk; ~b�kÞ). To solve this

problem efficiently for group k, we derive an upper-bound quadratic-form

approximation for Rdðbk; ~b�kÞ based on the quadratic majorization property of

Lðbk; ~b�kÞ given in the next proposition. Then we minimize the surrogate

majorizing quadratic form rather than the actual Rdðbk; ~b�kÞ.

Proposition 2 Let Xk be the sub-matrix of X corresponding to group k. The
quadratic majorization condition is satisfied for both pseudo loss approximations.

That is, for all b and ~b we have
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Lðbk; ~b�kÞ� Lð~bk; ~b�kÞ þ ðbk � ~bkÞ
>rkLð~bk; ~b�kÞ þ

1

2
ðbk � ~bkÞ

>Hkðbk � ~bkÞ;

ð8Þ

where Hk ¼ 2Xk
>Xk=n

d=maxðs;1�sÞ for W
ð1Þ
s;dð�Þ, and Hk ¼ 2Xk

>Xk=n
d for Wð2Þs;dð�Þ.

The proof of Proposition 2 is detailed in Sect. 2 of the Supplementary material.

The upper bound in (8) can be further relaxed to get the following upper bound

approximation of Rdðbk; ~b�kÞ

Rdðbk; ~b�kÞ�Qðbk; ~b�kÞ
:¼ Lð~bk; ~b�kÞ þ ðbk � ~bkÞ>rkLð~bk; ~b�kÞ

þ ck
2
ðbk � ~bkÞ>ðbk � ~bkÞ þ Pk;wk

ðkbkk2Þ;
ð9Þ

where ck is the largest eigenvalue of the matrix Hk.

Thus, we minimize the quadratic form Qðbk; ~b�kÞ groupwise, while cycling

through groups. The update solution using Qðbk; ~b�kÞ of (9) has a closed form for

the three group penalties.

Note, after updating all the groups in a cycle, one can verify that the objective

function (7) is decreased (i.e., it satisfies the descent property) using the

majorization-minimization principle Hunter and Lange (2000, 2004). This assures

the convergence of the GPQR algorithms.

Validation of GPQR convergence is carried out through simulation scenarios in

Sect. 3.3 to demonstrate that the algorithm solution satisfies the Karush–Kuhn–

Tucker (KKT) conditions. The derivation of both the theoretical and numerical

KKT conditions of the GPQR algorithm are outlined in Sects. 6 and 7 of the

Supplementary material, respectively. Our KKT conditions are calculated based on

the pseudo QR objective function RdðbÞ given in (7).

Next, we present the GPQR framework in detail for each group-penalty.

2.1 Pseudo QR with group-Lasso penalty

This section gives details of the GPQR algorithm with the Glasso penalty and its

convergence rate properties.

In this case, the penalty term Pk;wk
ðkbkk2Þ in (9) is replaced by the Glasso penalty

given in (2). By employing the proximal gradient algorithm for Qðbk; ~b�kÞ to update
bk, one can write

~bnewk ¼ argmin
bk

Q bk; ~b�k
� �

¼ argmin
bk

1

2
bk � ~bk � c1krkL ~bk; ~b�k

� �� ��
�
�

�
�
�
2

2
þkxkc

�1
k bkk k2

¼ proxkxkc�1k
h

~bk � c�1k rkL ~bk; ~b�k
� �� �

ð10Þ

where the proximal mapping of the function hð:Þ ¼ k:k2 is given by
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proxkhðuÞ ¼ argminvkhðvÞ þ
1

2
v� uk k22:

The following algorithm gives details of the GPQR with the Glasso penalty.

The next theorem provides the convergence rate analysis of the GPQR algorithm

with the Glasso penalty.

Theorem 1 The GPQR algorithm with Glasso penalty (Algorithm 1) converges at

least linearly to the global solution b�.

The proof of Theorem 1 is relegated to Sect. 3 of the Supplementary material.

2.2 Pseudo QR with GSCAD and GMCP penalties

The nonconvex group penalties, GSCAD and GMCP, are used both to perform

group variable-selection and to reduce the bias towards zero introduced by the

Glasso. For instance, to understand the effect of the GSCAD penalty (4) compared

with the Glasso (2), let us consider its derivative function, which relies directly on

the shrinkage amount of the parameters. For small values of kbkk2 (i.e. kbkk2� k),
GSCAD exercises the same shrinkage on the parameters’ effects, as the Glasso does

(i.e. P0k;wk
ðkbkk2Þ ¼ k). However, the GSCAD penalty continuously reduces the

shrinkage for k�kbkk2� hk, and the shrinkage becomes zero when kbkk2� kh (i.e.

P0k;wk
ðkbkk2Þ ¼ 0). A similar reasoning can explain the GMCP penalty effect

(Breheny and Huang 2011).

The following proposition gives closed form solutions to the update, ~b
new

k , in (9)

when Pk;wk
ðkbkk2Þ is given by (3) for GMCP, and by (4) for the GSCAD.

Proposition 3 Let Qðbk; ~bÞ be the surrogate function given by (9) and let
Pk;wk
ðkbkk2Þ be one of the two penalties given in (3) and (4). The closed form

solutions to (9) of ~b
new

k for the GPQR algorithm with the GMCP and GSCAD
penalties are, respectively, given by

~bnewk  �FðZkÞ ¼

1

ck � wk=h
Zk

kZkk2
SðkZkk2; kwkÞ; if kZkk2� ckhk

1

ck
Zk; if kZkk2 [ ckhk;

8
>><

>>:
ð11Þ
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~b
new

k  �FðZkÞ ¼

1

ck

Zk

kZkk2
SðkZkk2; kwkÞ; if kZkk2�ðwk þ ckÞk

1

ck �
wk

h� 1

Zk

kZkk2
ðkZkk2 �

kwkh
h� 1

Þ; if ðwk þ ckÞk\kZkk2� ckhk

1

ck
Zk; if kZkk2 [ ckhk

8
>>>>>>><

>>>>>>>:

;

ð12Þ

where Zk ¼ ck ~bk �rkLð~bk; ~b�kÞ, and S(.) is the soft-threshold operator, defined as

Sðkzk2; kÞ :¼
0; if kzk2� k

kzk2 � k; if kzk2 [ k:

�

The proof of Proposition 3 is detailed in Sect. 4 of the Supplementary material.

The following algorithm summarizes the steps of the GPQR framework with the

GMCP or GSCAD penalty:

The convexity of Pk;wk
ðtÞ for the Glasso is a crucial property for proving the

convergence, at least linearly, of the GPQR in Theorem 1. However, this property is

not available for the non-convex GMCP and GSCAD penalties.

2.3 Pseudo QR with group local linear approximation penalty

In this section, we propose to extend the local linear approximation (LLA) trick to

solve the GPQR with the GMCP and GSCAD penalties to remedy the possible

computational weakness of the two nonconvex penalties.

The LLA approximation is based on the first order Taylor expansion of the MCP

or SCAD penalty functions around k~bkk2. Thus, one can write

Pk;wk
ðkbkk2Þ � Pk;wk

ðk~bkk2Þ þ P0k;wk
ðk~bkk2Þðkbkk2 � k~bkk2Þ; ð13Þ

where Pk;wk
ð:Þ is one of the two penalties given in (3) and (4).

Substituting (13) into (9) leads to the following update for the GPQR with the

group local linear approximation (GLLA) penalty
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~b
new

k ¼ argminbkQðbk; ~b�kÞ þ kw0kkbkk2; ð14Þ

where w01 ¼ 0 and w0k ¼
wkP

0
k;wk
ðk~bkk2Þ
k

for k ¼ 2; . . .;K. The weight w0k depends on

the penalty function through the first derivative, P0k;wk
ðk~bkk2Þ, which is given for the

GMCP and GSCAD, respectively, as follows:

k�
~bk

�
�

�
�
2

h
; if ~bk

�
�

�
�
2
� hk

0; if ~bk
�
�

�
�
2
[ hk;

8
><

>:

k; if bkk k2� k

hk
h� 1

�
~bk

�
�

�
�
2

h� 1
; if k\ bkk k2� hk

0; if bkk k2 [ hk:

8
>>><

>>>:

The problem (14) can be solved using a Glasso-type update similar to Algorithm 1

described in Sect. 2.1. Thus, we use the proximal gradient algorithm in (10) to solve

it.

The details of the GPQR approach with the GLLA penalty is described in

Algorithm 3.

Note that the GLLA penalty is a convex majorant of the GMCP (or GSCAD)

penalty. Thus, for each fixed value of k, the GLLA allows a search of the solution in

a locally convex region, and consequently it may lead to stable and smooth path

solutions.

A comparison of the GLLA approximation and the exact GMCP and GSCAD

penalties is illustrated in Sect. 5 of the Supplementary material. Figure S.1 shows

that the exact and approximate path solutions of the GPQR algorithm with

nonconvex penalties are nearly identical for all values of the tuning parameter k.
This proves the efficiency of the GLLA approximation.
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2.4 Implementation

In this section we give details about the implementation of the proposed GPQR

algorithms.

The intercept term is always included in all our models. Each GPQR model is

solved by using a fine grid of k. We proceeded by choosing kmax which is the

smallest k that allows all groups, bk; ð2 6 k 6 KÞ, to be zero except the intercept.

To obtain kmax, we first calculated the estimates, b̂0, for the null model with only the

intercept:

b̂0 ¼ arg min
b0

1

n

Xn

i¼1
Wsðyi � b0Þ: ð15Þ

According to the KKT conditions of (15), we derived the following formula:

kmax ¼ max
k¼2;...;K

krkLðb̂0; 0Þk2=xk:

Let kmin ¼ gkmax, where 0\g\1 is a small number. We generated a sequence of ks

by placing 98 evenly spaced points, fk½l�g99l¼2, between kmax and kmin in log-scale and

let k½1� ¼ kmax and k½100� ¼ kmin.

We also used the warm-start trick in solving the solution paths: the solution of bb

at k½l�1� is taken as the initial value for solving the solution of bb at k½l�.
For computing efficiency at each k, we used the ‘‘strong rule statement’’

proposed by Tibshirani et al. (2012), which screens out group predictors. Let b̂
½l�
be

the solution at k½l�. For finding the solution b½lþ1� at k½lþ1�, we introduced a

supplementary screening step to check whether a group k satisfies the following

condition:

krkLðbb
½l�
Þk2�xkð2k½lþ1� � k½l�Þ: ð16Þ

Let S be the subset of the predictors’ groups that are not discarded by condition (16)

and Sc, its complement. According to the strong rule, at k½lþ1�, the coefficients of the
groups in the set S are very likely to be active and those of the groups in the

complement set Sc are very likely to be inactive. If this statement is correct, then

solving the proposed GPQR models will only require a reduced data set, ðy;XSÞ,
where XS is the restricted matrix where the columns are the groups belonging to S.

Denote this solution as b̂S. Then, one must verify if the strong rule statement is well

confirmed at k½lþ1� by verifying if ~b
½lþ1� ¼ ðb̂S; 0Þ satisfies the KKT conditions.

Following the calculation details in Sects. 6 and 7 of the Supplementary material,

this means that for the GLasso, GMCP, and GSCAD, any group k from the inactive

set, Sc, needs to satisfy the following inequality

krkLð~b
½lþ1�Þk2�xkk

½lþ1�:

For GLLA, the inactive group, k, needs to verify
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krkLð~b
½lþ1�Þk2�x0kk

½lþ1�;

where x0k is the weight given in (14).

If there are no violations of the strong rule statement, then the solution at k ¼
k½lþ1� is ~b

½lþ1� ¼ ðb̂S; 0Þ, otherwise we add the subset of the violator groups, denoted

as V, into the active set, S ¼ S [ V, and repeat the whole procedure with the

reduced data set ðy;XSÞ.

3 Numerical experiments

We conducted simulation studies with four scenarios to illustrate the methodology

presented in this work. In the first scenario, we aimed both (i) to graphically

illustrate key advantages of using group penalized quantile regression approaches to

detect heterogeneous effects of predictors, as alternatives to group penalized Least-

Square (LS) regression methods, and (ii) to compare the proposed approaches with

existing penalized QR methods, namely, the regularized Bayesian QR(BQR)

method (Alhamzawi et al. 2012), the standard quantile regression with the lasso,

SCAD, and MCP penalties (Mkhadri et al. 2017), and Boosting Additive QR

(BAQR) (Fenske et al. 2011). The LS methods are implemented in the grpreg R

package (Breheny 2015), with Glasso, GSCAD, and GMCP penalties. The BQR

approach is implemented in the Brq R package (Alhamzawi et al. 2012). The BAQR

is implemented in the mboost R package (Hofner et al. 2014). The standard

penalized quantile regression of (Mkhadri et al. 2017) uses the pseudo quantile

approximation functions [(5) and (6)] to fit the QR, and is implemented in the SQR
R package.

The second and the third scenarios targeted evaluation of the proposed

approach’s performance in terms of computational efficiency and prediction

accuracy. The fourth scenario aimed to evaluate the GPQR algorithms convergence

based on the numerical KKT conditions derived in Sect. 7 of the Supplementary

material.

3.1 Simulation setting of scenarios 1, 2 and 3

3.1.1 Setting of scenario 1

To illustrate key advantages of the proposed method compared with single-variable

selection QR methods, we focused on a setting in which the predictors are highly

correlated in this scenario. The model is based on an illustration example in

Mkhadri and Ouhourane (2013). We set the sample size to n ¼ 100 observations

and p ¼ 20 predictors. The predictors Xj; j ¼ 1; . . .; 20, were generated as follows:

– We generated Zj; j ¼ 1; . . .; 11; following the standard normal distribution;

– We set Xj ¼ Z1 þ �xj ; j ¼ 1; . . .; 4; �xj 	Nð0; 0:1Þ;
– Xj ¼ Z2 þ �xj ; j ¼ 5; . . .; 8; �xj 	Nð0; 0:1Þ;
– Xj ¼ Z3 þ �xj ; j ¼ 9; . . .; 12; �xj 	Nð0; 0:1Þ;
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– Xj ¼ Zj�9; j ¼ 13; . . .; 20.

Thus, we set the predictors’ effects to be

b ¼ ð3; 3; 3; 3
|fflfflfflffl{zfflfflfflffl}

G1

; 2; 2; 2; 2
|fflfflfflffl{zfflfflfflffl}

G2

;�1;�1;�1;�1
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

G3

; 0; . . .; 0
|fflfflffl{zfflfflffl}
G4�G11

Þ>

and r ¼ 3. The response Y is generated from the following location-scale linear

regression model

Y ¼
X20

j¼1
bjXj þ UðX20Þ�; �	Nð0; 3Þ;

where Uð:Þ is the cumulative distribution function of the standard normal distri-

bution. Many authors consider that using Uð:Þ in variance simulation generates a

model with heteroscedasticity (Wang et al. 2012; Gu and Zou 2016). The predictors

X1, X2, X3, and X4 form group G1, for which the underlying common factor is Z1;
the predictors X5, X6, X7, and X8 form the second group G2, for which the under-

lying common factor is Z2; finally, X9, X10, X11, and X12 form the third group G3, for

which the underlying common factor is Z3. The within-group correlations are high.

An oracle estimator would identify the groups G1, G2, and G3 as the important

variables, and variable X20 (i.e. G11 ¼ UðX20Þ) when s 6¼ 0:5.

3.1.2 Setting of scenario 2

This scenario considers an additive model involving both continuous and

categorical factors (i.e. groups of predictors) to relate y to the predictors. The

model in this scenario is based in part on simulation studies conducted in Yuan and

Lin (2006). We generated 21 independent random variables Z1; . . .; Z20 and W from

N(0, 1). We set the predictors to be defined as X1 ¼ Z1 and Xj ¼ ðZj þWÞ=
ffiffiffi
2
p

, for

j ¼ 2; . . .; 20. Furthermore, each predictor Xj; j ¼ 11; . . .; 20; was trichotomized as
~Xj ¼ 0 if Xj is smaller than U�1ð1=3Þ, ~Xj ¼ 1 if Xj is larger than U�1ð2=3Þ, and
~Xj ¼ 2 if Xj is between U�1ð1=3Þ and U�1ð2=3Þ. The response was then simulated

from the heterogeneous additive model

Y ¼ 3X3
3 þ X2

3 þ X3
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

G3

þ 1

3
X3
6 � X2

6 þ
2

3
X6

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
G6

þ 2Ið ~X11 ¼ 0Þ þ Ið ~X11 ¼ 1Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G11

þUðX1Þ�;

where �	Nð0; 1Þ, and Ið�Þ is the indicator function. In this scenario, each contin-

uous factor was represented by a polynomial of degree 3 and each categorical factor

was represented by two levels of its corresponding trichotomized variable. Thus, by

construction, we have a total p ¼ 50 (i.e. 30 continuous and 20 categorical vari-

ables), and we set the sample size to n ¼ 50.
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3.1.3 Setting of scenario 3

In this scenario, we considered an additive model involving continuous factors

represented by polynomials of degree 3 to link y to the predictors. The data

generation is motivated in part by a simulation study carried out in Peng and Wang

(2015). First, we simulated ð ~X1; ~X2; . . .; ~XpÞ> from a multivariate normal distribution

Npð0p;RÞ with R ¼ ðrjkÞp
p and rjk ¼ 0:5jj�kj. Second, we set X1 ¼ Uð ~X1Þ and
Xj ¼ ~Xj for j ¼ 2; . . .; p. Third, each variable from {6,12,15,20} was represented

through a third-order polynomial. Then, we simulated the response variable from

the following regression model:

Y ¼ X6 þ X2
6 þ X3

6|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
þ 1

3
X12 � X2

12 þ
2

3
X3
12

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þ 1

2
X15 � X2

15 þ
1

2
X3
15

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
þX20 þ X2

20 þ X3
20|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
þX1�;

where �	Nð0; 1Þ. We considered n ¼ 300 and p ¼ 1000. In this scenario, we

considered fXj;X
2
j ;X

3
j g as a group when fitting penalized LS and all the proposed

models. Thus, the final design matrix consists of q ¼ 3p ¼ 3000 variables.

Note, in both Scenarios 2 and 3, X1 plays the role of the heteroskedastic predictor

and does not influence the center of the response conditional distribution. Thus, one

of the aims of these two settings is to test the GPQR ability to select X1 when

considering lower and/or upper conditional quantiles (i.e. s 6¼ 0:5).
We implemented 100 Monte Carlo replications in each of the three scenarios.

Each replication consists of a training dataset of 300 observations, and a test dataset

of 300 observations. The training dataset is used to fit the proposed models and their

competitors (at a desired sth quantile) to determine the optimal k using five-fold

cross-validation (CV). For our models, the optimal k corresponds to the value of k
that gives a small value for the quantile-based prediction errors (QPEs) defined as

QPEs ¼
1

n

X

i2validation
qsðyi � x>i b̂Þ:

The performance evaluation of the methods, including the LS methods, is computed

on the test data sets, and is based on the following statistics:

– False Positive FP: the number of the groups of variables with zero coefficients

incorrectly included in the final model;

– P1: the proportion of the true active/non-null groups, bk 6¼ 0, that are selected;

– P2: the proportion of simulation runs X1 (or X20 in Scenario 1) is selected;

– AE: the absolute estimate error defined by
Pp

j¼0 jb̂j � bjj;
– The quantile-based prediction error (QPEs) defined as

QPEs ¼
1

n

Xn

i¼1
qsðyi � x>i b̂Þ;

– The root mean square error (RMSE) defined as
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðQuantileYiðsjxiÞ � dQuantileYiðsjxiÞÞ

2

s

;

where dQuantileYiðsjxiÞÞ is the estimated value of the true quantile,

QuantileYiðsjxiÞÞ, of the Yi conditional on xi. The QPEs and RMSE statistics

have been used recently in Xu et al. (2020) for model-prediction evaluation in

the expectile regression framework. Note, for the LS methods, QPE is defined as

the absolute deviation/prediction error (i.e. QPE0:5), and

RMSE ¼ ½
Pn

i¼1ðQuantileYið0:5jxiÞ � x>i b̂LSÞ
2=n�1=2.

In Scenario 1, two locations were investigated with the quantile-based models,

s ¼ 0:5 and 0.95; in Scenarios 2 and 3, the proposed methods were fitted for three

locations/quantiles, s ¼ 0:5; 0:75 and 0.95.

3.2 Simulation results of scenarios 1, 2, and 3

In this section we outline and discuss the results of the first three scenarios.

3.2.1 Results of scenario 1

Graphical illustration results (based on one replication) Figure 2 shows the path

solutions for the grid on ½kmin; kmax� of k, for the GPQR and LS methods with the

Glasso, GSCAD, and GMCP. The GPQR is fitted for two locations, s ¼ f0:5; 0:95g.
Figure 2 shows that the coefficients’ profiles of the GPQR with s 2 f0:50; 0:95g
tend to be smooth, however, the LS paths fluctuate widely, and some coefficients are

in opposite directions/signs to their true values. This poor behavior of the LS

methods is remarkably confirmed by the AE statistic in Table 1, which shows

substantial bias of the LS parameters’ estimators. Furthermore, the heteroskedastic

variable UðX20Þ in the scale component, represented by G11, is often recovered

when fitting the GPQR model for the 0.95th conditional quantile (pink group); this

is not the case for the GPQR model with s ¼ 0:5 and for the LS methods. This

shows that the GPQR framework can be useful for detecting heteroskedastic groups

of variables.

Numerical results Table 1 outlines the results for averages, over 100 replications,

of the six statistics defined earlier. Notice that, the BQR, standard penalized QR, and

BAQR methods are designed for individual variable selection, and therefore, they

do not enforce the selection of a whole group of variables. Thus, for fair comparison

with these three methods in this scenario, the false positive (FP) and P1 statistics

were calculated for all methods as the number of predictors with zero coefficients

incorrectly included in the final model and the proportion of the true active

variables, respectively.

Table 1 shows that the GPQR outperforms all the other methods for almost all the

statistics, except for the FP statistic, for which the BQR and BAQR have the

smallest values. By contrast, because in this scenario the predictors are highly

correlated, the single-variable selection methods suffer from unstable selection of
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correlated predictors (Wang et al. 2019). This is well illustrated in the results of the

P1 (especially for the BQR) and AE statistics in Table 1. The LS methods perform

well in general, in this scenario, and surprisingly detect the heteroskedastic

predictor, X20, especially with the Glasso penalty, which has a high value of the P2

statistic (70%). When it is fitted for s ¼ 0:95, the GPQR approach outperforms the

LS for the P2 statistic, which reaches 94% for P2 using the GPQR and Glasso

penalty. Yet, the LS results of the AE statistic reveal substantial bias for the model-

parameter estimators. We also reported the Time statistic (in seconds) for

computational efficiency comparison. The results of this statistic in Table 1 show

that all the methods have comparable run-times, except for the BQR. This is not

surprising because the BQR uses a Markov chain Monte Carlo (MCMC) algorithm

to estimate the solution. Moreover, the BQR does not enforce sparsity, and so, it

provides non-exact zero coefficient estimates and builds on the parameters’

posterior distribution to provide credible intervals for variable selection. The

performance of Boosting algorithms is influenced by two principal tuning

parameters, including mstop, which is the maximum number of iterations the
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Fig. 2 At the top from left to right, the coefficient paths of the penalized quantile regression with the
three group penalties (Q-Glasso, Q-GMCP, and Q-GSCAD) and s ¼ 0:95 are shown as a function of the
tuning parameter k; the vertical dashed line reports k selected by five-fold CV. The middle from left to
right shows the coefficient paths of the penalized quantile regression with s ¼ 0:5. The bottom row from
left to right shows the coefficient paths corresponding to the grpreg package with the same three penalties.
The group coefficients G1, G2, G3, and G11 are plotted in green, red, blue and pink, respectively. The
black line corresponds to the noisy groups of predictors
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boosting algorithm will run for. Large mstop values lead to including more

components. Oppositely, smaller mstop values lead to excluding more components

(Mayr et al. 2014). Consequently, the FP and P1 statistics are sensitive to mstop. In
Scenario 1, the optimum value of this parameter is selected via cross-validation.

Note, we have only reported the results of the GPQR with the check function

approximation (5) in this scenario. The unreported results of the GPQR with check

function approximation (6) are similar to those presented in Table 1.

3.2.2 Results of scenarios 2 and 3

The simulation results of the average, over 100 replications, of the FP, P1, P2, AE,

RMSE, and QPEs statistics are outlined in Tables 2 and 3 for Scenarios 2 and 3,

respectively. The six statistics are calculated for the GPQR approach with all

suggested group penalties. In these two scenarios, we reported results for both

pseudo check function approximations, (5) and (6).

Tables 2 and 3 show that all models select the true active groups, with the P1

statistic always around 100%. By contrast, the FP statistic reveals that the GPQR

with the GMCP and GSCAD penalties tends to provide less false positives than the

Glasso.

The P2 statistic shows how many times the heterogeneous variable, X1, is

selected in each model fit. For s ¼ 0:5, it is expected that X1 will not be selected

because it has no effect on the center of y. However, as s increases, the proportion of
selecting X1 increases for all approaches. For s ¼ 0:75, P2 ranges between

ð17%; 73%Þ, and when s ¼ 0:95, P2 is approximately around 100%.

3.3 Checking the KKT conditions

In this section we test the accuracy of the proposed algorithms’ solutions by

checking their numerical KKT conditions, defined in Sect. 7 of the Supplementary

material. More precisely, because we are using the majorization-minimization

principle to solve (7), the aim of this scenario is to evaluate if the minimizer bb,
obtained by solving (9), satisfies the first-order optimality conditions (i.e. the KKT

conditions) for the objective function (7). This ensures that the GPQR algorithms

converge to the desired solution. Derivation of the KKT conditions is given in more

detail in Sects. 6 and 7 of the Supplementary material.

3.3.1 Setting of scenario 4

We designed this simulation scenario following a numerical example suggested in

Yang and Zou (2015). First, we simulated q initial predictors, X1;X2; . . .;Xq, from a

centered multivariate normal distribution with a compound symmetry correlation

matrix, C, with Cjj0 ¼ q, for all j 6¼ j0. We then generated the response following the

regression model
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Y ¼
Xq

j¼1

2

3
Xj � X2

j þ
1

3
X3
j

� 	

bj þ �;

where bj ¼ ð�1Þj expf�ð2j� 1Þ=20g, the error term � is generated from Nð0; r2Þ,
and r2 is chosen so that the signal-to-noise ratio (SNR) is 3 (i.e.

SNR ¼ kXbk2=
ffiffiffi
n
p

r). We considered fXj;X
2
j ;X

3
j g as a group when fitting all the

proposed models. Thus, the final design matrix of the predictors has p ¼ 3q col-

umns. In this scenario, we set two values of q ¼ 1000; 3000, and we fixed n ¼ 100.

For all group penalties, we fitted three conditional quantile regression models, with

s ¼ 0:50; 0:75; 0:95.
For all algorithms, we calculated the number of coefficients among p coefficients

that violated the KKT condition check at each k value. This number is then averaged

over the 100k values. We repeated this process 10 times on 10 independent datasets.

Table 4 reports the results that are averaged over 100k values and averaged over the

10 independent runs.

4: Table 4 shows that all exact group-penalized methods have a zero-violation

count, except the GSCAD which has 1 violation. The GPQR with the GLLA penalty

also has small violation counts. Thus, one can argue that all the proposed

approaches are accurate algorithms that pass the KKT checks without severe

violation.

Table 4 The reported numbers are the average number of coefficients among the p coefficients that

violated the KKT condition check using the GPQR with the Glasso, GMCP, GSCAD, and GLLA

penalties

Method ðn; pÞ ¼ ð100; 3000Þ ðn; pÞ ¼ ð100; 9000Þ

s ¼ 0:50 s ¼ 0:75 s ¼ 0:95 s ¼ 0:50 s ¼ 0:75 s ¼ 0:95

GLasso1 0 0 0 0 0 0

GLasso2 0 0 0 0 0 0

GMCP1 0 0 0 0 0 0

GMCP2 0 0 0 0 0 0

GSCAD1 0 0 1 0 0 0

GSCAD2 0 0 1 0 0 0

McpGLLA1 8 4 2 10 5 3

McpGLLA2 8 4 2 10 5 3

ScadGLLA1 3 1 1 3 2 1

ScadGLLA2 3 1 1 3 2 1

Subscripts 1 and 2 indicate that the GPQR is fitted using the check functions (5) and (6) respectively.

Results are averaged over the k sequence of 100 values and averaged over 10 independent runs
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4 Real data

4.1 Gene-based analysis of Alzheimer’s disease neuroimaging initiative
(ADNI) data

The data used in the preparation of this article were obtained from the ADNI

database (https://adni.loni.usc.edu). The ADNI was launched in 2003 as a public-

private partnership, led by principal investigator Michael W. Weiner, MD. The

ADNI’s primary goal is to test whether serial magnetic resonance imaging (MRI),

positron emission tomography (PET), other biological markers, and clinical and

neuropsychological assessment can be combined to measure the progression of mild

cognitive impairment (MCI) and early Alzheimer’s disease (AD).

It is known that the pathogenic relevance in AD presents a decrease of the

biomarker cerebrospinal fluid amyloid-b42 (CSF Ab42) levels and an increase in the
biomarker cerebrospinal fluid total tau (CSF T-tau) levels (Li et al. 2017).

Moreover, it is known that individuals with a family history of AD have a higher

risk for AD than those without a family history. This reveals that underlying genetic

factors may play a key role in AD (Hohman et al. 2014). In fact, in several GWAS,

the two biomarkers CSF Ab42 and CSF T-tau have been reported to be associated

with several SNPs falling within or near the genes APOE, TOMM40 and APOC1,
located in Chromosome 19 (Kim et al. 2011).

To illustrate the use of our framework in GWAS, we conducted a gene-based

association study using the GPQR approaches in the ADNI cohort. More precisely,

we considered the CSF T-tau/Ab42 ratio as an AD imaging quantitative trait

(response) on 442 subjects. As predictors, we used single-nucleotide polymorphisms

(SNPs) falling within a genomic region of 629 kilobase pairs located around the

three genes of interest (APOE, TOMM40, and APOC1). This region results in K ¼
17 genes/groups with observed genotypes of 1162 SNPs of the ADNI samples. We

then assigned the SNPs to genes based on their base-pair coordinates. We used the R

package biomaRt(Durinck et al. 2009) to extract the genes’ start-end genomic

coordinates.

This analysis aims to replicate/select the three genes of interest as associated with

the response variable, CSF T-tau/Ab42, using the GPQR framework and compare its

performance with that of group penalized LS methods. In our analyses, all models

were fitted with 17 penalized genes/groups, and we adjusted for sex, age, and

diagnostic without penalization because such covariates are known to be potential

confounding factors for AD.

We conducted two analyses for this data. First, we fitted the GPQR and group

penalized LS methods for all 442 analyzed subjects with five-fold CV to obtain a

better model estimation. In the second analysis, we aimed to evaluate the prediction

performance of the methods. Thus, we randomly divided the data into a training

sample of two-thirds of the observations and the remainder making up the test data.

The model is fitted to the training data and the prediction errors are calculated on the

test data. The tuning parameters were selected by five-fold CV on the training data.

The whole procedure was repeated 100 times and we reported the empirical
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distribution of the prediction-errors and model-size statistics using box plots, for all

methods. The model-size statistic is defined as the number of significant genes.

Figures 3, 4, and Table 5 of the main manuscript summarize the results from the

gene-based association study of the ADNI cohort in the center of the response

variable (i.e. mean and median).

In Fig. 3, the LS methods tend to select the null model, whereas the median

regressions (QR with s ¼ 0:5) select a model with a moderate number of significant
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Fig. 3 On the left from top to bottom, the L2-norm of the coefficient paths of the Q-GLasso, Q-GMCP,
and Q-GSCAD, respectively, with s ¼ 0:5, are shown as a function of the tuning parameter k. On the
right from top to bottom are the coefficient paths of the same group methods with LS
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genes. Interestingly, at least two of the three genes of interest are selected as active

groups by the GPQR using the five-fold CV criterion (pink vertical line). This is also

in agreement with the results of Fig. 4 (left panel) which shows the distribution of

the model-size statistic for the 100 replications of the second analysis. In Table 5,

when comparing the methods based on the selection of the genes of interest (APOE,
TOMM40, and APOC1), we notice that the GPQR with the Glasso penalty (Q-
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Fig. 4 Comparison of the number of selected genes (Model Size) and the prediction accuracy (QPEs)
based on 100 replications, for the ADNI data. The group quantile methods are fitted with s ¼ 0:5

Table 5 The number of times (in %) the genes APOE, TOMM40, and APOC1 are selected based on 100

replications, for the ADNI data

Genes LS-GLasso Q-GLasso LS-GMCP Q-GMCP LS-GSCAD Q-GSCAD

APOC1 8.0 81.6 3.5 23.1 8.0 20.4

TOMM40 0.0 26.5 0.0 0.6 0.0 0.0

APOE 43.4 81.8 19.0 34.7 45.1 20.8

The group quantile methods are fitted with s ¼ 0:5
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Glasso) is better than the OLS with the Glasso penalty (LS-Glasso). In fact, the

proportions of the three genes detected by the Q-Glasso are significantly larger than

the LS-Glasso.

By contrast, the right panel of Fig. 4 shows an improvement in predictive

performance when using the QR approaches. This is also in accordance with the

results reported in Fig. 3 and Table 5.

We implemented further analyses of the ADNI data to investigate the effects of

the important three genes in the lower and upper tails of the conditional distribution

of the response variable. Thus, the GPQR model was fitted for four additional

locations, s 2 f0:1; 0:25; 0:75; 0:9g.
Figure S.2 shows kb̂kk2 for the three important genes in the ordinate axis as a

function of a grid of values of s 2 f0:1; 0:25; 0:5; 0:75; 0:9g. For each value of s, we
used the five-fold CV procedure to obtain the optimal ks; Fig. S.2 reports the GPQR

solution with optimal ks for all 442 subjects of the ADNI cohort. Although one

would expect that the genes’ effects could be more important for subjects with

higher levels of the response variable (i.e. higher quantiles), the results in Fig. S.2

show no significant evidence of this expectation. This might be explained by the

presence of both relevant and noisy SNPs within the same gene, which can add

some estimation instability to the overall gene effect using the GPQR. Sparse-group

selection methods, which achieve both group selection and single-variable selection

within each group might be suitable in such situations (Simon et al. 2013; Friedman

et al. 2010).

Figure S.3 highlights the results of the L2-norm of the coefficient paths of the Q-

Glasso, Q-GMCP, and Q-GSCAD, respectively, as a function of the tuning

parameter k, for s ¼ 0:25 and 0.75. It shows similar patterns to those in the analysis

of the GPQR with the Glasso and s ¼ 0:5. However, the GPQR with the GMCP (or

GSCAD) behaves differently for s ¼ 0:25 and s ¼ 0:75. In fact, fitting the GPQR

with group MCP/SCAD detects APOE and APOC1 for s ¼ 0:75; but, when the

0.25-th quantile model is fitted, it selects APOE and TOMM40.
For more investigation, we also analyzed the 0.25-th and 0.75-th quantiles,

similar to the second analysis of the median/center regression (i.e. we conducted

0.25-th and 0.75-th quantile regression models for 100 random training/test

replications of the ADNI cohort). Table S.1 of the Supplementary materials

summarizes the results for this analysis.

The results are based on 100 random training/test data replications of the ADNI

cohort. Each replication consists of a random split of the whole cohort dataset to

training (67% observations) and test (33% observations) datasets. The model is

fitted to the training data to choose the optimal solution and the tuning parameter

using five-fold CV. Then, the prediction performance is evaluated in the test data.

Table S.1 outlines the average, over 100 replications, of the following three

statistics: (1) the number of times (in proportion) the three genes of interest (APOE,
TOMM40, and APOC1) were selected, (2) the quantile-based error prediction

(QPEs), and (3) the model size (Size) statistic.

Table S.1 shows that the GPQR behaves relatively differently when looking for

the effects of the genes in the different locations of the response conditional-
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distribution, particularly for the model-size statistic. This table shows that the

proportions of the three genes detected for s ¼ 0:25 are larger than for s ¼ 0:75.
Table S.1 also shows inconsistency in the results of the three penalties for the same

location, except for the QPEs statistic, which is stable across different specifica-

tions. This might be explained, on one hand, by the known sensitivity of the lasso-

type penalized regression models to the five-fold assignment used in the CV

procedure, (Roberts and Nowak 2014). On the other hand, a good tuning parameter

choice depends on the unknown parameter r2 which is the homogeneous noise

variance in linear models (Bickel et al. 2009). For the ADNI data, more knowledge

about the standard deviation is necessary and this needs more data investigation.

The Discussion section emphasizes this issue and provides tentative solutions.

4.2 Gene-based analysis of the DNA methylation data near the BLK gene

This section illustrates the GPQR approach performance for binary classification

using DNA methylation around the BLK gene, located in chromosome 8, to detect

differentially methylated regions (DMRs). DMRs refer to genomic regions with

significantly different methylation levels between two groups of samples (e.g.: case-

controls). The data consists of methylation levels of 5986 cytosine-guanine

dinucleotides (i.e. CpG sites) within a genomic region of 2 million base pairs (i.e. 2

Mb pairs located in Chromosome 8, ranging between positions Chr8-10321522 and

Chr8-12391296). The methylation levels in these CpG sites (predictors) are

measured in 40 samples using bisulfite sequencing (Lakhal-Chaieb et al. 2017).

Each sample corresponds to one of three cell types: B cells (8 samples), T cells (19

samples), and Monocytes (13 samples). These samples are derived from whole

blood collected from a cohort of healthy individuals from Sweden. This genomic

region is known to be hypomethylated near the BLK gene in B-cells, compared to

other cell types (Hertz et al. 1999). We first coded the cell types as y ¼ f0; 1g
variable, with y ¼ 1 corresponding to B-cells and y ¼ 0 corresponding to T- and

Monocyte-cell types. To build groups of predictors (CpGs sites), we proceeded in a

similar way to Sect. 4.1. That is, we extracted the start-end genomic positions of all

genes belonging to the 2Mb region. K ¼ 36 genes fall within this region. Then, we

used prior information about the genomic position of each CpG site and assigned

each CpG to a corresponding gene based on its base pair coordinate. More precisely,

if the genomic position of a CpG site is between the start and end positions of a

gene, we considered that the CpG belongs to this gene/group. The CpG assignment

procedure is implemented in the biomaRt R package. In total, 4427 of all the 5986

CpG sites spread over the 36 genes. The size of the studied groups ranges between 1

and 756, with 398 CpG sites falling between the start-end coordinates of the BLK
gene.

The f0; 1g response variable is then fitted by the group penalized LS and GPQR

methods with s ¼ 0:5. Given the binary nature of the response variable, we also

compared the proposed methods with support vector machine (SVM) and logistic

regression with a group lasso penalty. Both methods are implemented in the gglasso
R package (Yang and Zou 2013).
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This analysis aims to test the performance of our methods in detecting the group

of CpG sites belonging to the BLK gene as a DMR for the 0� 1 response, and to test

the power of the GPQR in classification. The classification function is

Iðfitted value[ 0:5Þ, where I(A) is the indicator function which equals 1 if A is

true and 0 if A is false.

In Fig. 5, the x and y axes correspond respectively to the genomic position, say tj,

of the j-th CpG site and the coefficient value ðb̂jÞ1� j� 4427 of the optimal solution

that is obtained using five-fold CV. More precisely, each blue dot point in Fig.5

represents a pair ðtj; b̂jÞ, for j ¼ 1; . . .; 4427. As we can see, the region around 11.3

Mb with size 150kb (i.e., the region delimited by the two vertical lines) is detected/

selected by the quantile, SVM, and logistic regression methods, but not with the LS

approach. This region is known to be the DMR between the DNA methylation

profiles of the B-cells and T/Mono cells (Turgeon et al. 2016). These results are also

in agreement with Lakhal-Chaieb et al. (2017)’s analysis.

In a second analysis of this DNA methylation data, we randomly divided the data

into a training sample of 30 observations with the remainder making up the test data.

The model is fitted to the training data and the misclassification error rate (MER) is

calculated on test data. The MER is defined as the ratio of the number of

misclassified observations to the total number of observations. The tuning

parameters are selected by five-fold CV on the training data, and s is fixed to 0.5

for all our algorithms in this analysis. The whole procedure is repeated 100 times.

The results of this analysis are shown in Figs. 6 and 7.

In Fig. 6, the y axis represents the rate of selection of each gene, over 100

replications, of the methylation data analysis. Each segment represents a gene, with

large segments corresponding to genes containing a high number of CpG sites (i.e.

large genes), and vice versa. The DMR region is always selected by the quantile

regression and SVM methods; it is often selected by logistic regression, but the

region is never selected by the LS methods. Furthermore, our proposed quantile

approaches and SVM outperform the LS approaches and the logistic regression in

terms of classification prediction accuracy. This is illustrated by the results of the

MER statistic in Fig. 7.

5 Discussion

In this work, we have proposed a unified and computationally-efficient block

descent algorithm for solving the group penalized quantile regression in high-

dimensional settings. The framework, called GPQR, fits quantile regression with the

most appealing group penalties, namely, the group lasso penalty, the group non-

convex penalties (SCAD and MCP) and their local approximations. The GPQR

allows for the selection of important (heterogeneous) groups of predictors and

provides estimates of their effects on the response simultaneously.

We provided a detailed theoretical justification of the linear convergence rate

property of the GPQR with group lasso penalty. Moreover, simulation studies have

confirmed that the quantile regression performs better for group variable-selection
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than single-variable quantile regression methods and group-variable selection least-

squares approaches in terms of prediction accuracy, variable selection, and detection

of heteroscedasticity.
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Fig. 5 At the top from left to right, the optimal value (five-fold CV) for the regression coefficients of the
LS-methods with the three group penalties (GMCP, GSCAD, and Glasso) are shown as a function of the
genomic position. The middle from left to right shows the coefficient values of the same group penalties
for the quantile regression, with s ¼ 0:5. The bottom row shows the coefficient value of the SVM and
logistic regression with the Glasso penalty. The x and y axes correspond respectively to the genomic

position, tj, of the j-th CpG site and the coefficient value ðb̂jÞ1� j� 4427 of the optimal solution
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Although the GPQR demonstrated its utility in selecting relevant genes in the

gene-based selection analysis of the ADNI cohort, the results also showed some

inconsistency across the three penalties. As we stated in Sect. 4, this might be a

result of the method sensitivity to the fold assignment used in the CV procedure,

10.5 11.0 11.5 12.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LS−GMCP

Location

ra
te

s 
of

 s
el

ec
te

d 
gr

ou
ps

10.5 11.0 11.5 12.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

LS−GSCAD

Location

ra
te

s 
of

 s
el

ec
te

d 
gr

ou
ps

10.5 11.0 11.5 12.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

LS−GLasso

Location

ra
te

s 
of

 s
el

ec
te

d 
gr

ou
ps

10.5 11.0 11.5 12.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q−GMCP

Location

ra
te

s 
of

 s
el

ec
te

d 
gr

ou
ps

10.5 11.0 11.5 12.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q−GSCAD

Location

ra
te

s 
of

 s
el

ec
te

d 
gr

ou
ps

10.5 11.0 11.5 12.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Q−GLasso

Location

ra
te

s 
of

 s
el

ec
te

d 
gr

ou
ps

10.5 11.0 11.5 12.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Logistic−GLasso

Location

ra
te

s 
of

 s
el

ec
te

d 
gr

ou
ps

10.5 11.0 11.5 12.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SVM−GLasso

Location

ra
te

s 
of

 s
el

ec
te

d 
gr

ou
ps

Fig. 6 Comparison of the proportion of selected genes for the DNA methylation data. At the top from left
to right, the proportion of LS-GMCP, LS-GSCAD, and LS-Glasso are shown as a function of the genomic
position. The middle from left to right shows the proportion of the same group penalties for the quantile
regression, with s ¼ 0:5. The bottom row shows the proportion of the SVM and logistic regression with
the Glasso penalty. The x and y axes correspond respectively to the genomic position, tj, of the j-th CpG

site and the proportion of non-zero ðb̂jÞ1� j� 4427

123

M. Ouhourane et al.



(Roberts and Nowak 2014). By contrast, a good tuning parameter choice depends on

the unknown parameter r2 which is the homogeneous noise variance in linear

models (Bickel et al. 2009). For real data situations, knowledge of the standard

deviation is lacking and needs more data investigation; yet error variance

homogeneity might be a strong assumption for real data applications. In the

literature, pivotal penalized methods have been developed to alleviate this problem

(Belloni et al. 2011b) (i.e. pivotal in a sense that the method neither relies on

knowledge of the standard deviation r nor does it need to pre-estimate r). Adapting
the GPQR to a pivotal group-variable selection approach within our GPQR
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framework might be a valuable research avenue. In summary, for real data analysis,

our guideline for users is to use the GPQR with the Glasso penalty if the global aim

of the analysis is prediction accuracy and to use the GPQR with the GSCAD or

GMCP penalties if selection consistency and sparsity are the primary goals.

Like standard QR models, the GPQR framework might be susceptible to the

well-known crossing-quantile issue. In high-dimensional settings, the crossing-

quantile issue might be more persistent because of the regularized estimation of the

quantile curves. In fact, because GPQR curves are estimated individually, the

monotonicity of the curves might be violated for some empirical data. Moreover,

penalization shrinkage levels may be different for different locations, which renders

the crossing even more frequent in high-dimensional settings. To circumvent the

crossing-quantile issue, in low-dimensional settings, several authors suggest

simultaneous constrained estimation of a sequence of quantile curves. For instance,

Koenker (1984) assumed the equality-of-slopes condition (i.e. quantile planes are

parallel). Liu and Wu (2009) proposed a sequential procedure for estimation of the

quantile that guarantees non-crossing, by constraining the current curve not to cross

the previous curve. Bondell et al. (2010) added constraints to the quantile regression

optimization problem to ensure non-crossing quantile hyperplanes for any given

sample. The crossing-quantiles question for penalized QR and/or high-dimensional

settings has seen limited consideration in the literature. Combining high-

dimensional and crossing problems might be an interesting avenue of research in

QR.

Finally, high-throughput time-varying omics data are becoming available in

many genetic studies. Performing predictions and modelling this data is key for

understanding the complexity of human health, disease susceptibility, and

causations. An interesting direction to pursue would be to study penalized QR in

high-dimensional longitudinal/panel data. In low-dimensional settings (i.e., n[ p),
the penalized QR fixed-effect model proposed in Koenker (2004) has been proved

very useful for capturing both unobserved individual-specific heterogeneity (i.e.

within-subject variation) and effects of heterogeneous predictors in the presence of

time-varying data. The extension of our framework to QR fixed-effect models in the

presence of high-dimensional longitudinal data could be an interesting avenue to

explore.

6 Software

Algorithms 1–3 are implemented in an R package, GPQR, which is publicly

available in GitHub (https://github.com/KarimOualkach/GPER.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10260-021-00580-8.
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